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We present interface treatments for computing the Euler gas-dynamics equations by a 
multidomain Chebyshev spectral collocation method. These treatments are suitable for use at 
the corners of subdomains and for patched or overlapping subdomains. They can be applied 
to interfaces placed in subsonic, supersonic, or transonic regions of a flow. Computed results 
indicate that the solutions are spectrally accurate, can be more accurate and more efficient 
than a single domain calculation, and that reflections of waves at interfaces are not signiti- 
cant. 0 1991 Academic Press, Inc. 

1. INTRODUCTION 

The essential feature of any multidomain spectral method is the procedure used 
to treat the interfaces between subdomains. For hyperbolic problems, characteristic 
interface conditions must be applied. A review of early work on such conditions can 
be found in Canuto et al. [ 11. More recently, Kopriva [2] described a multi- 
domain method based on a correction-type interface procedure where the solution 
was computed independently on each subdomain and then corrected afterwards for 
the propagation of characteristic information. This allowed subdomains to be 
patched or to overlap, and any subdomain could be refined independently of the 
others. Quarteroni [3] has also proposed an interface procedure for hyperbolic 
equations. His procedure differs from that of [2] in that a compatibility condition 
was solved at an interface. 

In one space dimension, the propagation of information through an interface 
is well delined by the method of characteristics. Consider, for example, a linear 
hyperbolic system 

which, we assume, can be de-coupled to 

w,+/iw,=o 
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where n = 2 -‘AZ is the real diagonal matrix of eigenvalues of A. The ith compo- 
nent of w is constant along the characteristic curves x - niit = const. At an inter- 
face, then, the characteristics with positive slope determine those components of w 
which are to be computed from information on the left, and the characteristics with 
negative slope determine those to be computed from the right. For the gas- 
dynamics equations in one space dimension, the Riemann invariants and the 
entropy [4] are constant along the characteristics. For subsonic flows, two of these 
characteristics come from the left and one comes from the right, so the domain of 
dependence is defined uniquely. 

For multidimensional problems, there is usually no unique set of characteristic 
curves which carry information to a point in space-time. Rather, information 
propagates along an infinity of b&characteristic curves which together define the 
surface of a characteristic cone [IS]. To derive treatments for an interface point in 
multidimensional problems, the authors of [2, 33 effectively chose two particular 
bi-characteristics. One of these bi-characteristics pointed in the direction of the 
outward normal to the interface, the other in the direction of the inward normal. 

The limitation to the choice of only the two characteristic curves along the 
normal to an interface is that the normal must vary continuously over the sub- 
domain boundary. This is not the case at the corners of rectangular subdomains. 
At such points, an ambiguity in the choice of the interface condition arises. In [2], 
one particular normal was chosen arbitrarily to avoid that ambiguity. 

In this paper we describe the solution of both steady and non-steady problems 
in gas-dynamics by a multidomain Chebyshev spectral method. The method main- 
tains the essential features of [2]: Subdomains can be patched or they can overlap; 
grid points do not have to match across interfaces so that each subdomain can be 
relined independently of the others. The new feature is the two-dimensional correc- 
tion-type interface condition which unambiguously defines subdomain-subdomain 
and subdomain-physical boundary conditions. The approximation follows histori- 
cally from the methods developed by Butler [6], Zanetti and Colasurdo [7], and 
Moretti and Zanetti [S]. Four, rather than two, bi-characteristic curves are chosen 
to determine the numerical domain of dependence. When the interface normal is 
continuous, the method reduces to that of Ref. [2]. 

The method is applied to the steady problems of a subsonic flow in an expanding 
duct, a transonic flow in a two-dimensional nozzle, and a subsonic flow over a 
smooth bump. These problems provide examples of subsonic, transonic, and super- 
sonic flows through interfaces and provide examples of several interface topologies. 
The expanding duct problem has an exact solution and we show that the accuracy 
is spectral for three grid topologies. In the final problem we consider the acoustic 
propagation of waves through interfaces and show that reflections at interfaces are 
not significant. 
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2. MULTIDOMAIN CHEBYSHEV DISCRETIZATION OF THE EULER EQUATIONS 

2.1. The Equations and Interior Point Approximations 

In this paper we consider the solution of the Euler gas-dynamics equations in the 
non-conservative form 

P,+q.VP+yV.q=O 

q,+q.Vq+TVP=O 

s,+q.vs=o, 

(1) 

where P = In(p) is the logarithm of the pressure, q = (u, u) is the velocity, s is 
the entropy, and T= a2/y is the temperature. The sound speed is defined by 
a=&exp[((y- 1) P-s)/2y], where y= 1.4. 

The interface treatments which we will derive can also be applied directly to solu- 
tions of the conservative form of the equations, though conservation will be lost at 
the interfaces. No one has yet presented a stable, conservative interface treatment 
for spectral approximations to hyperbolic equations in conservation form. The 
reason lies in the fact that only one condition can be specified for each variable at 
an interface and these conditions are fully specified by the characteristic conditions. 
The additional restriction of conservation overspecilies the interface conditions. 

For each problem, the computational domain is divided into several subdomains 
denoted by Gk, which collectively cover the domain. The subscript refers to grid k 
on level 1. Subdomains on the same level share (patched) boundaries with their 
neighbors. Subdomains on a higher level overlap those on the lower level. An 
explanation of how the grids are generated and managed, and how data are inter- 
polated between them, is presented in Ref. [2]. The only difference is that we now 
use both bilinear mappings and translinite mappings [9] to define the grids within 
each subdomain. 

On each subdomain, the system (1) takes the form of the quasi-linear system 

Q,+AQx+BQy=O, (2) 

where Q = [P u u slT. The coefficient matrices are 

where the variables U and V represent the contravariant velocity components 
U = uX, + uX, and V = uY, + u Y,. The spatial part of Eq. (2) is approximated 
within each subdomain by a standard Chebyshev spectral collocation method 
CL 21. 
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The result of the approximation is a system of ordinary differential equations for 
the unknowns at each grid point, 

Q,+R(Q)=O, (3) 

where R = [R, R, R, R,]= represents the discretization of the spatial part of (2). 
Equation (3) is then discretized in time by a two-stage Runge-Kutta procedure 

Q(o) = Q” 

Q”’ = QH + aI dtR(Q”‘) 

Q(*) = Q” + a2 dtR(Q”‘) 
(4) 

Q n+l- - Qc2). 

To obtain rapid convergence for the steady calculations, we use a, = LX* = 1, which 
corresponds to a forward Euler predictor and backward Euler corrector. The time 
step is controlled by requiring the Courant number based on the smallest grid 
spacing to be equal to 0.9. For the (linear) time accurate problem, we use the 
second order scheme with a, = f and a2 = 1 and a Courant number of 0.95. 

2.2. Interface Treatment 

For complex problems in gas-dynamics, the interface treatment must be able to 
define uniquely the solution at various types of interface points such as those shown 
in Fig. 1. The procedure presented in [2] can handle effectively the subdomain- 
subdomain and overlap interface points shown in that figure because a unique 
normal to the interface exists at these points, and information propagates between 
only two subdomains. At the remaining points shown in Fig. 1, the normal to the 
interface is not uniquely defined, and information can come from more than two 
subdomains or physical boundaries. 

In order to develop a procedure which unambiguously defines the treatment of 

SubdomainlSubdomain Cross 

ET3 r!Y 

‘7” Overlap 

SubdomainMlall 

FIG. 1. Examples of subdomain interface points. 
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\, 

FIG. 2. Domain of dependence of a point, P, in a subsonic flow. 

all the interface points in Fig. 1, we recall that for the system (2), information at a 
particular (x, y, t) comes from an infinity of bi-characteristics which form the 
surface of a cone [S]. Figure 2 shows the geometry of the situation. Along each 
bi-characteristic a compatibility can be written which relates derivatives of the 
unknowns to derivatives tangential to the characteristic cone. 

A formal derivation of the compatibility conditions can be found in Butler [6] 
and these are applicable to general hyperbolic systems of equations. For our 
purposes, however, the formulation of Zanetti and Colasurdo [7], which is 
specific to the Euler equations, is most useful. From that paper, we see that the 
combination of the pressure and momentum equations 

must hold along each bi-characteristic, where 5 = cos(b).? + sin(a) j is 
the cone. Equation (5) is algebraically equivalent [7] to the equation 

(5) 

a normal to 

cos(S)g+sin(6)5 sin(d);-cos(d)$ (6) 

which relates derivatives along a particular bi-characteristic, 

to derivatives along the tangential direction 

t= -sin(d)&+cos(8)$. 
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The entropy is constant along characteristics and its equation is already in the 
characteristic form 

Do as as a.9 Dt=~+u~+v-=o. 
ay 

For our purposes, these bi-characteristic curves define the domain of dependence 
of the solution at an interface point. They are equally useful for defining the domain 
of dependence at physical boundaries [lo]. 

To actually compute the solutions at an interface, we will derive a correction pro- 
cedure based on Eq. (5) where the solutions are first computed on the interface by 
the interior point equations and are later corrected to account for the characteristic 
waves. Reference [2] proposed the use of such a procedure at subdomain interfaces 
and argued that it is more efficient than directly solving the compatibility equations 
(as done in [3]) if, because grid points did not match, one must interpolate data 
between subdomains. Correction boundary procedures based on characteristics 
have also been described by Gottlieb et al. [ 111 and Forster [12]. 

To derive the new interface procedures, we require the computed flow variables 
at each interface point to satisfy the same compatibility relations, (5), as the true 
solutions. To accomplish this, we replace the first two equations of (1) by the first 
two equations of the discretized system, (3), in the compatibility equation, (5). If 
we call R,- R,i+ R,g, the discrete compatibility condition which must be 
satisfied at each interface grid point is 

(Pt + RP) + 5 (qt + R4). 5 = 0. (8) 

The second speed, a, is a nonlinear function of P and is evaluated at the grid point 
in question. For convenience, let us now define the new variables B and 4 to be the 
solutions at a boundary or interface point obtained by solving the system (3). 
That is, 

P,=-R, 

ii,= -R 4’ 

With this substitution, Eq. (8) becomes 

(9) 

Again, Eq. (9) tells how the true computed solution (P, q) and the solution 
computed by the interior point equations (P, ij) must be related along each 
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bi-characteristic. To obtain the desired correction procedure, we integrate (9) from 
time level n to n + 1 

The second integral is approximated by evaluating the sound speed at t,. Then 

The second term of the second line is the product of two factors which are both 
O(dt). Then to order At*, E q. (11) yields the compatibility condition at the new 
time level (leaving off superscripts) 

(P-P)+J+j).5=0 (12a) 

or 

provided that the same condition, (12a), is satisfied at the previous time step also. 
Equation (12b) defines how the generalized Riemann variable P + (r/a) q .5 at time 
level n + 1 is related to the solution computed from the interior point equations. It 
is a generalization of the one-dimensional results of Gottlieb et al. [11] who 
required that (as a boundary condition) the true characteristic variable must be 
equal to the computed one. In this case, however, we have defined an infinity of 
generalized characteristic variables. 

Because the entropy equation, (7), is already in characteristic form, the only 
correction that is necessary is to set s= E, where s” is the computed value chosen 
from the subdomain lying upstream from the interface point. 

We remark that the linearization error can be eliminated for the gas-dynamics 
equations if the flow is hornentropic by realizing that 
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FIG. 3. Projection of the bi-characteristic cone onto the x - y plane showing the choice of four 
bi-characteristics and the associated Riemann variables. 

When (13) is substituted into (9) and integrated in time, 

2(a”+‘-B.+‘)+(q”+‘-~“+‘).~=0. 
Y-1 

(14) 

Equation (14) gives an alternative definition of the compatibility condition (12) 
which can be used to derive the interface conditions. 

Since we are using low order temporal approximations and, in this paper, are 
primarily interested in the steady state, we are not concerned with the linearization 
error and have used (12b) rather than (14) in our interface conditions below. For 
the (linear) time-dependent acoustics problem which we solve, this linearization 
error does not exist. 

We are now in the position to derive the final interface conditions. The procedure 
described in [2] effectively chooses two of the bi-characteristics, 5 = + N, where N 
is the normal to the interface, to solve for the pressure and the velocity. To be able 
to compute all the interface points shown in Fig. 1, including corner points, we 
follow the procedures of [6-81 and select four particular bi-characteristics which lie 
at positions 90” apart around the characteristic cone. Figure 3 shows an example, 
for a subsonic flow, of the projection onto the x - y plane of the bi-characteristic 
cone, the four bi-characteristics and the streamline for the particular choice of 6 = 0, 
rc, 7r/2, 3rc/2. From Eq. (12) we have associated with the four bi-characteristics the 
four Riemann variables: 

(15) 
S'~PfL=Pf~iT. 

a a 
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The four equations of (15) and the equation P = P form an overdetermined 
algebraic system for the flow variables. By combining them appropriately we can 
solve for the three variables P, U, u at any boundary or interface point. 

The choice of which Riemann variables are computed from which subdomains or 
boundaries depends on the origin of the particular bi-characteristic. It is important 
to recall at this point that a spectral method is global within each subdomain. Thus, 
the values of each generalized Riemann variable are computed from all points 
within a subdomain. The choice of the four bi-characteristics, then, merely tells us 
from which subdomain we will take a particular Riemann variable. One cannot, as 
in the finite difference methods of Refs. [7, 81, locally modify the stencil to 
“upwind” the evaluation of a particular Riemann variable. 

As examples of how to combine (15) to obtain interface procedures, we now 
derive conditions for the subdomainsubdomain, wall-interface, and cross points 
shown in Fig. 1: 

(i) Subdomain-subdomain interface. Figure 4a shows a schematic of a point 
at the interface between two subdomains where the flow is subsonic. The sub- 
domain on the right has a liner grid in the vertical direction than the subdomain 
on the right so the grid lines are not continuous across the interface. It is clear from 
the figure that the Riemann variables S’ and R + must be computed from the sub- 
domain on the left while R - must be computed from the right. Since there is no 
boundary grid point in the right subdomain, R - must be interpolated. (See [2] for 
the procedure.) The particular choice of bi-characteristics simplifies the computa- 
tion of the velocity components. To obtain the vertical velocity component, we 
combine S+ and S- to obtain 

a b 

SW I SE 

C 

FIG. 4. Domain of dependence of three interface points in a subsonic flow: (a) subdomain- 
subdomain point; (b) subdomain-wall point; (c) cross point. 

u=qsL+ 
3 

-S,)=&, (16) 

NW NE 
I 
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where the subscript L refers to the value computed from the interior point scheme 
in the left subdomain. Thus, the correct value of u at the interface is just the velocity 
computed in the subdomain on the left. To compute the horizontal velocity 
component, R + and R - are combined to yield 

u=a(R: 
2Y 

-RR). (17) 

These results, (16) and (17), are identical to those one would obtain by the 
procedure described in [2]. 

The formula for the pressure is only slightly more complicated. A simple average 
of the four Riemann variables 

P=i(R; +R, +S,+ +s;)=f(3P,+P,)+$(a,-ti,) (18) 

does not give the same correction formula 

P = $(P, + B,) + $ (ii, - CR) (19) 

that would be correct, since the boundary is smooth, if only two characteristics 
were chosen. Equation (19) is also the correct formula that should be applied when 
the vertical velocity vanishes, i.e., when the flow is one-dimensional. The fact that 
the system of equations which defines P, U, and u is overdetermined, however, gives 
us the freedom to choose combinations of the Riemann variables which will 
calculate the pressure in a manner consistent with the one-dimensional problem. 
Taking a cue from [6,7], we note that one further solution for the pressure is the 
value obtained from the interior point calculation, i.e., P= P, which is an 
approximation to the solution computed along the streamline. If we subtract twice 
this equation from the sum of the four equations, (15) 

P=$(R,i+R,+S;+S;-2&)=f(&+&)++o(iiL-iiR). (20) 

This is now identical to what would be obtained by the procedure described in [2] 
and is consistent with a one-dimensional flow. 

(ii) Wall-interface boundary. An example of a case where one has a choice 
of two normals at an interface point is shown in Fig. 4b, which depicts a point at 
the intersection of an interface and a wall in a subsonic flow which moves from left 
to right. The physical boundary condition which must be applied is that the normal 
velocity component, v, vanishes. From the figure, we see that R + and S- must be 
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computed from the left while R - must be computed from the right. The tangential 
velocity component is computed from R +, 

To compute the pressure at the interface point, we set v = 0 and use the fact that 
this condition can be viewed as being created by an equivalent S coming from 
below (cf. Moretti [lo]). Thus, 

This formula is not equivalent to what one would obtain if one chose either the 
vertical or the horizontal normal at the interface point. Neither is it equal to the 
formula one would obtain by averaging the one-dimensional formulas for each 
direction, for that average would include a downstream dependence on 6,. 
It is, however, consistent with what one would obtain if the flow were purely one- 
dimensional in the horizontal direction because in that case, v”, = 0. Numerical 
experience indicates that averaging the two locally one-dimensional formulas is 
unstable, while Eq. (22) provides a stable procedure. 

(iii) Cross point subdomain intersection. Figure 4c shows the situation at a 
cross point. In this case, 

v = a (S,‘, - S,,) 
2Y 

u=~(R~;~-S,) 
2Y 

(23) 

(24) 

and 

P=f(R,:,+R,+S,:,+S,,-2~~,). (25) 

Notice that, in terms of the Riemann variables, the interface conditions Eqs. 
(23~(25) are identical in form to Eqs. (17), (18), and (20). In fact, all (internal) 
interface conditions are governed by the same three equations, when written in 
terms of the Riemann variables. 

If the interfaces or boundaries are not aligned with the x- y axes, it is still 
possible to use the procedure described above. In such cases one needs only to 
change the choices of 6. As an example, we consider the wall boundary shown in 
Fig. 5. The physical boundary condition is that the normal velocity q . N = 0. The 
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FIG. 5. Choice of bi-characteristics when a boundary is not aligned with the x - y axes. 

Riemann variables are computed in the directions tangential and normal to the 
wall: 

These can be combined to give the tangential velocity and the pressure. The tangen- 
tial velocity and the boundary condition are sufficient to compute the velocity com- 
ponents u and u. To compute the pressure, we follow the same steps that were used 
to obtain (22) with these particular Riemann variables. 

Actual implementation of the interface and boundary conditions is 
straightforward. At the end of each time step, the directions of the four bi-charac- 
teristics and the streamline are determined from the flow variables for each point 
on the boundary of a subdomain. These directions, in turn, determine the sub- 
domains from which the Riemann variables are to be computed. Once the Riemann 
variables are evaluated, the corrected flow variables can be found. The procedure 
is valid in both subsonic and supersonic flows. It is even applicable if the conser- 
vative form of the Euler equations is used. In that case, one would need only to 
calculate P, U, u, and a from the conservative variables, correct them, and convert 
back. 

Finally, the interface procedures can be extended to three space dimensions by 
the introduction of two additional Riemann variables 

581/9612-14 

(27) 
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where k is the computed value of the vertical velocity component. One would then 
compute w by combining G’ in the same way that R * and S’ are combined to 
compute u and o. To compute the pressure, one adds the six Riemann variables 
and subtracts four times p computed along the streamline to give a correction 
procedure which is consistent with a one- or two-dimensional flow. 

3. NUMERICAL EXAMPLES 

We now consider four numerical examples. The first three are steady flows: 
Subsonic flow in an expanding duct, the transonic flow in a converging-diverging 
nozzle and subsonic flow over a bump. The final problem is a linear acoustics 
example designed to test the effect on the propagation of waves of resolution 
changes at interfaces. 

(1) Subsonic jlow in a diverging duct. The flow of a steady, irrotational gas 
from a point source can be solved exactly by a hodograph transformation [4]. In 
this flow, the streamlines are radial and, for the purposes of this calculation, two 
of them are chosen as walls of a duct. Finite difference solutions of the subsonic 
flow case were analyzed in detail by Moretti and Pandolfi [13]. For our example 
we choose a duct with lower wall y = 0 and upper wall y = x tan(rc/6) for x between 
1 and 1.5. As boundary conditions, we specify that the normal velocity vanish along 
the upper and lower walls. At the exit, x = 1.5, we specify the pressure from the 
exact solution. At the inflow at x = 1, we specify the incoming Riemann variable, 
R +, from the exact solution, and the angle of the flow by the relation v = yu. The 
solutions were started with an initial gas at rest, i.e., P = u = v = 0, and marched in 
time until steady state was reached. 

Grid 1 Grid 2 Grid 3 

FIG. 6. Three grid topologies for the subsonic flow in a two-dimensional duct 
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0 

-7 

0 600 1200 1800 

Iteration 

FIG. 7. Residual history for the solutions on the three grids of Fig. 6. 

The calculations were performed on the three subdomain topologies shown in 
Fig. 6. These grids contain all of the interface types shown in Fig. 1 plus others such 
as inflow-interface or outflow-interface boundary points. In particular, Grid 1 
contains two “T” intersections, and Grid 2 contains a single “cross” intersection. 
Both contain subdomain-wall interfaces. Grid 3 contains “T” intersections and 
overlapping subdomains, as well as subdomain-wall interfaces. 

The solutions on the different grid topologies all converge to steady state. 
Figure 7 shows the history of the maximum pressure residual for the grids shown 
in Fig. 6. All three converged to the 32-bit machine accuracy to which the solutions 
were computed by 1200 time steps. We do not consider the differences in the 

5 10 15 

SW(N) 

FIG. 8. Maximum error in the pressure for the three grids of Fig. 6 as a function of the total number 
of grid points. 
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FIG. 9. Solution contours on grid 3 of Fig. 6: (a) pressure; (b) math number. 

convergence rates to be significant. Since the time steps were chosen by a Courant 
condition based on the smallest grid spacing, Grid 3 had a larger time step than 
the other two. 

Spectral accuracy is observed for this problem. Figure 8, which plots the maxi- 
mum error in the pressure as a function of the total number of grid points, shows 
that the error decays exponentially fast on all three grids. Furthermore, the solu- 
tions pass smoothly through the interfaces. Figure 9 plots the pressure and Mach 
number contours for Grid 3 of Fig. 6. For plotting purposes, these and all other 
contour plots in this paper have been “expanded” by interpolating the results on 
each subdomain to a tine grid (32 points in each direction) and contouring each 
subdomain independently. Note that even in the overlap regions the contours pass 
continuously between subdomains. 

(2) Transonic jlow in a two-dimensional converging-diverging nozzle. The 
interface procedure described above is valid for subsonic, transonic, and supersonic 
interfaces. For an example, with all three types, we consider the transonic flow in 
a two-dimensional converging-diverging nozzle with area variation 

A(x) = 1 + cos* 
27Lx ( > - 

27c+x 
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FIG. 10. Grid (a) and Mach contours (b) for steady transonic flow in a two-dimensional nozzle. 

Ii i I I II I I I III I I I III I I II 

a 

b 
FIG. 11. Grid (a) and pressure (b) contours for a seven domain calculation of subsonic flow over a 

Gaussian shaped bump. 
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which has its throat at x=27c/3. The nozzle was computed on the interval 
0 < x < 4.5. At the inflow at x = 0, we specified R + from the exact solution of the 
quasi-one-dimensional approximation and v = 0. No boundary condition was 
specified at the supersonic outflow boundary on the right. The calculation was 
begun with the solution of the quasi-one-dimensional approximation and marched 
in time until steady state was reached. 

Figure 10 shows the Mach contours and the grid for a calculation where four 
subdomains were used. The solution was computed for 2000 time steps and was 
converged to six digits after 1900. Interfaces were chosen so that one would fall in 
the subsonic portion of the nozzle and one in the supersonic portion. The final 
interface was placed at the throat so that it would have both subsonic and super- 
sonic points along it. Note that the Mach contours are continuous and smooth 
across all three interfaces. 

(3) Subsonic flow over a bump. By careful choice of the subdomains, the mul- 
tidomain solution of the Euler equations can be both more accurate and more 
efficient than a single domain calculation. To illustrate this point, we consider 
calculations made of the external flow over a bump placed in a uniform, subsonic, 
M =0.4 free stream. The computational domain was specified on the interval 
-2 <x < 6 with a bump defined by y= 0.2 exp( -(x- 2)*/0.3). The upper 
boundary was placed at y = 3.5 which was found to be far enough away to have 
little effect on the flow near the bottom wall. For the boundary condition on the 
left, we specified u = 0 and the incoming Riemann variable from the free stream, 
R 2. On the right and top we specified R ; and S; , respectively. Free stream initial 
conditions were used. 

Figure 11 presents the grid and pressure contours of a calculation which used 
seven subdomains and a total of 425 grid points. The subdomains were refined so 
that the best resolution occurred in the neighborhood of the bump, i.e., where the 
flow was most disturbed from its free stream values. The solution was computed for 
2900 time steps and was converged by roughly 2200. Figure 12 compares the 
pressure coefficient, defined as C, = (p - p, )/( poo a’,), for a single domain case and 
for the seven domain case shown in Fig. 11. The single domain example used the 
same number of grid points in each direction as the seven domain calculation and 
it converged by roughly 2900 time steps. The seven domain solution is clearly better 
than the single domain solution which has oscillations because it could not resolve 
the variation of the flow near the bump. 

In addition to being more accurate, the multidomain calculation is more efficient. 
In this case, the single domain calculation required a factor of 3.3 more (scalar, 32 
bit) cpu time than the seven domain calculation. The reason for the increase in 
efficiency is twofold (cf. Kopriva [14]). First, since matrix multiplication is used, 
the work of the derivative evaluations is quadratic in the number of grid points. 
Thus, it is less expensive to compute the derivatives on the several small (in number 
of grid points) subdomains than it is on one large subdomain. (We note, also, that 
round-off errors are significantly reduced by using fewer numbers of grid points.) 



MULTIDOMAIN SPECTRAL SOLUTION 

a 
0 

R 

1.2 

0.8 

0.4 

0.0 

-0.4 

-2 0 2 

x 

4 6 

1 I I I 

445 

-2 0 2 4 6 

X 

FIG. 12. Pressure coefficient along the bottom boundary of the flow over a bump: (a) single domain 
calculation; (b) seven domain calculation. 
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Second, the maximum time step that can be used depends nonlinearly on the order 
of the Chebyshev expansions in a given subdomain. Thus, it was also possible to 
use a larger time step on the seven domain calculation. The two calculations con- 
verged at roughly the same physical time, but the multidomain calculation required 
fewer time steps to get there. These two positive factors are balanced by the over- 
head of interpolating and transferring the data at the subdomain interfaces, which 
is clearly the lesser effect. 

(4) Acoustic propagation through subdomain interfaces. Our final example 
concerns the propagation of waves through subdomain interfaces. It is well known 
(e.g., [15]) that the large group velocity errors which are characteristic of finite 
difference methods produce spurious reflections of waves passing through abrupt 
changes in grid resolution. Though there are no theoretical results regarding the 
phase or group velocity errors of Chebyshev spectral methods, previous papers 
[2, 141 have indicated that for a multidomain spectral method, reflections from 
interfaces are not a serious problem in one space dimension. We show that, with 
the interface procedure developed above, this conclusion is still valid in two space 
dimensions. 

To derive the equations which govern the propagation of acoustic waves in a 
constant mean flow, we apply the acoustic approximation 

P=P,+&P’ 

u = 240 + Ed 

v = vg + Ed 

(28) 

to the Euler equations (2). Under this linearization, the coefficient matrix matrices 
become 

We specify the initial and boundary conditions so that the exact solution to the 
problem is a plane Gaussian wave which travels at an angle, 0, to the horizontal, 

P(X, Y, t) = exp(z) 

u(x, y, t) = Ic/ exp(z) 
J 

(29) 

44 y, t) = cp exp(z), 
J 
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FIG. 13. Grid used for propagation of acoustic waves through interfaces. 

where 

Here, k = (@, cp) = (cos(B), sin(Q) is the direction of the wavevector. For our 
calculations, we set (q,, uO) = (1, 1) so that the mean flow was 45” to the horizontal. 
The parameter ~7 =0.05 was chosen so that the wave packet was just resolved by 
the coarse grids. 

FIG. 14. Pressure contours of acoustic wave with 0 = n/6 propagating through the grid of Fig. 13 at 
three times: (a) t = 0.0; (b) t = 0.2; (c) t = 0.4. 
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FIG. 15. Pressure contours of acoustic wave with 0 = z/3 propagating through the grid of Fig. 13 at 
three times: (a) f = 0.0; (b) f = 0.2; (c) t = 0.4. 

The boundary value problem solved on the square domain (x, y) E [ - 1, l] x 
[ - 1, l] shown in Fig. 13 which has been subdivided into the five subdomains: 

G,,=[-1, -O.~]X[-l,l] 

G,, = [ -0.3, 0.31 x [ - 1, -0.31 

G,, = [0.3, l] x [ - 1, l] 

G,, = [ -0.3,0.3] x [0.3, l] 

G,, = [ -0.3, 0.33 x [ -0.3, 0.31. 

The grid GS1 used 25 grid points in each direction so that the change in resolution 
was roughly a factor of five between it and the surrounding subdomains. 

We present results for the two values of 8 =x/3 and 8 =x/6. Neither the mean 
flow nor the wavevector were aligned to the grid lines or to the subdomain 
boundaries. Figure 14 shows the pressure contours at times t = 0.0, 0.2, and 0.4 for 
8 = n/6. These times correspond to the initial condition, shortly after the wave crest 
passes into the line grid, G5,, and shortly after the wave crest leaves the fine grid. 
The contours represent the range of pressure between 1.1 and 2.5 plotted at an 
interval of 0.1. Figure 15 shows the results for 8 =x/3. In neither case is there 
evidence of significant reflections at the interfaces nor a systematic phase shift 
between the solutions on the line and coarse grids. These results suggest that the 
group velocity errors of the spectral method are very low and that the interface 
treatment allows waves to pass without reflections even if the waves are not aligned 
to the interface. We have also computed solutions with overlapping subdomains 
and the same conclusions can be reached from those results. 

4. CONCLUSIONS 

We have presented an interface treatment which enables the multidomain 
spectral method presented in Ref. [2] to solve the Euler gas-dynamics.equations. 
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The treatment differs from that of Ref. [2] in that it uses four bi-characteristics 
rather than two to determine the domain of dependence at each interface/boundary 
point. In this way, it allows the unique specification of the interface/boundary 
points in a smooth two-dimensional flow. Nevertheless, along portions of an 
interface where the normal is continuous, the technique reduces to that of Ref. [2]. 

The correction-type scheme presented in Ref. [2] has been retained by the new 
interface procedures. Though we have not tested it, it should be possible to apply 
in three space dimensions. The procedure allows the solution to be computed inde- 
pendently on each subdomain and then corrected independently for each interface. 
Thus, there is significant coarse-grained parallelism to the method. This fact has 
been exploited in a parallel version which has run on several computer architectures 
Cl0 

The method was applied to four flow problems. From the first, we conclude that 
the method is convergent and spectrally accurate. The second shows that the inter- 
faces can be subsonic, supersonic, or both, and there is no difficulty near a sonic 
line. The third problem presents a case where the multidomain solution is clearly 
more accurate and more efficient than the single domain calculation. The final 
example suggests that reflections at the interfaces are not significant even with a 5:l 
refinement of the subdomains and waves which are not aligned to the interfaces. 

One issue we have not addressed in this paper is how to deal with shock waves. 
The characteristic nature of the interface conditions which we have described 
precludes the passage of captured shocks from one subdomain to another. Since 
shock capturing methods for spectral methods are still problematical [ 11, this is 
not as serious a problem as it would be for a finite difference method. If shocks are 
present, however, alternatives are available. One is to lit the shock at a boundary 
of a subdomain [17, 183. In this way, the solution is not discretized across the dis- 
continuity and the shock motion is calculated explicitly. An alternative would be to 
place a subdomain which covers the shock region, if the position of the shock is 
roughly known before the calculation, and use an accurate finite difference shock 
capturing scheme in that subdomain. The feasibility of this approach is described 
in [19]. 
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